

Statistics in research

widely accepted as a powerful toolincrease in the use of stat methods

A great number of published medical research contains statistical errors!

Some examples...

- McKinney WP, et al. The inexact use of Fisher's Exact Test in six major medical journals. JAMA. 1989;261:3430-3.
- Kanter MH, Taylor JR. Accuracy of statistical methods in Transfusion: a review of articles from July/August 1992 through June 1993. Transfusion. 1994;34:697-701.
- Kuo YH. Extrapolation of correlation between 2 variables in 4 general medical journals. JAMA. 2002 Jun 5;287(21):2815-7.
- Nagele P. Misuse of standard error of the mean (SEM) when reporting variability of a sample. A critical evaluation of four anaesthesia journals. Br J Anaesth. 2003 Apr;90(4):514-6.
- Simundic AM, Nikolac N, Topic E. Methodological issues in genetic association studies of inherited thrombophilia. Clin Appl Thromb Hemost. 2009;15(3):327-33.
- Simundic AM, Nikolac N. Most common statistical errors of articles submitted to Biochem Med. 2009;19(3):294-300.

Why worry?

- serious problem,
- may lead to:
 - distorted results, incorrect conclusions,
- waste of valuable resources,
- unethical,
- can have serious clinical consequences.

Errare humanum est...

'to err is human'

" It appears that misuse arises from various sources: degrees of competence in statistical theory and methods, honest error in the application of methods, egregious negligence, and deliberate deception (misconduct.)."

Gardenier JS, Resnik DB. The misuse of statistics: concepts, tools, and a research agenda. Account Res. 2002;9(2):65-74.

statistical guidelines statistical peer reviewing

modest improvement some major problems still exist

Basic errors

- sampling
- data presentation
- choice of the proper statistical test
- P value
- correlation
- conclusions, causality
- multiple hypothesis testing

not discussed here: studies of diagnostic accuracy, genetic association, survival analysis, clinical trials, microarray, meta analysis and other

Sampling error

random
 representative

inferential statistics

- sampling bias consistent tendency in one direction (bias)
- can over- and underestimate parameters of the central tendency and dispersion
- misleading understanding of the heterogeneity of the population

Sampling error - cont'd

be specific!

- do not declare interest in general population (atherosclerosis patients, DM2)
- avoid extremes

have a unique protocol

- do not change protocol
- do not have two different sampling "arms"
- be sure to control important steps

Sampling error – cont'd

criteria for controls

- ideal control is same as the case, except for the characteristic under investigation
- equality for baseline characteristics
- testing for equality does not prove the comparability
- randomisation
 - inadequate randomisation should be avoided!
 - to prevent use sophisticated methods
 - to correct apply statistical adjustment
 - always report randomisation technique employed

Sampling error – cont'd

Ideally

- include those to which conclusions are to be applied,
- use adequate sample size.

One in four articles (n=198/860, 23%) published in four anaesthesia journals in 2001 inappropriately used the SEM in descriptive statistics					
to describe the variability of the study sample.					
	Total	Incorrect use of SEM;total*			
Anesthesia & Analgesia	405	112 (27.7)			
British Journal of Anaesthesia	137	31 (22.6)			
Anesthesiology	257	48 (18.7)			
	61	7 (11.5)			

Right test?

Assumptions of tests need to be checked:

- **v** research question
- scale of measurement
- ✓ variable type
- distribution, dispersion (variance)
- ☑ group size, number of groups
- ☑ number of measurements/individual
- Marusteri M, Bacarea V. Comparing groups for statistical differences: how to choose the right statistical test? Biochemia Medica 2010;20(1):15-32.

	To assess the frequency of dermatology literature.	f statistical ei	rrors in the		
5	59/155 (38%) articles contained wrong statistical test.				
	Statistical Test	No. (%) of Articles (n = 155)	Proportion Incorrectly Applied*		
	χ^2 Test	46 (29.7)	3/46 (6.5)		
	Unpaired t test	29 (18.7)	11/29 (37.9)		
	Analysis of variance	26 (16.8)	3/26 (11.5)		
	Pisited exact lest	23 (14.0)	U E(16(21.2)		
	Falleu / lest	16 (10.3)	5/16 (31.3)		
	Survival analysis	10 (9.7)	0		
	Spearman rank correlation	10 (0.4)	0		
	Mann Whitney test	12(7.7)	0		
	Name-willing lest	11 (7.1)	0 0/11 (19.0)		
	Wilcovop signed rank test	11 (7.1)	2/11 (10.2)		
	Kruckel Wellie test	1 (7.1)	0		
	McNemar test	3 (1.0)	0		
	Wichternal test	3 (1.9)	J		
Aca	Neville JA, et al. Errors in the Archives of De demy of Dermatology From January-December	rmatology and the er 2003. Arch Derm	Journal of the Ame natol. 2006;142:73	rican 7-40.	

To assess the frequency of statistical errors i manuscripts submitted to BM from 2006-200	n 18.				
55 original articles with statistical analysis were identified. \Box					
Error	Error rate N (proportion)				
Power analysis not provided	55/55 (1.0)				
Incorrect use of statistical test for comparing three or more groups for differences	21/28 (0.75)				
Incorrect presentation of P value	36/54 (0.66)				
Incorrect choice of the statistical test	34/55 (0.62)				
Incorrect interpretation of correlation analysis	11/20 (0.55)				
Incorrect use or presentation of descriptive analysis	19/55 (0.35)				
Incorrect interpretation of P value	12/54 (0.22)				
Simundic AM, Nikolac N. Most common statistical errors of article	s submitted to				

P value – related errors wrong calculation Type 1 and Type 2 errors wrong presentation reporting only P report the absolute difference between groups and 95% Ci report test statistics and degrees of freedom (as the magnitude of an effect is not suggested by a *P*-value)

erroneously interpreting P

ANZJPAustra Zealand Journa	lian and New I of Psychiatry	Number reported	Number inconsistent	Percent inconsisten
2000 ANZJP	t test	24	2	8.3%
	F test	70	5	7.1%
	χ^2 test	79	17	21.5%
	Total number of tests	173	24	13.9%
2005 ANZJP	t test	24	4	16.7%
	F test	70	14	20.0%
	χ^2 test	61	5	8.2%
	Total number of tests	155	23	14.8%
2005 APS	t test	57	3	5.3%
APSActa	F test	84	11	13.1%
Psychiatrica Scandinavica	χ^2 test	77	17	22.1%
	Total number of tests	218	31	14.2%
Total	t test	105	9	8.6%
	F test	224	30	13.4%
	γ^2 test	217	39	18.0%
	Total number of tests	546	78	14.3%

P value - reporting

The risk of postoperative nausea and vomiting was higher in the placebo group compared with patients treated by dexamethasone (OR: 4.5, 95% CI: 4.15-5.35, P=0.018).

The risk of postoperative nausea and vomiting was higher in the placebo group compared with patients treated by dexamethasone (OR: 1.01, 95% CI: 1.009-14.281, P=0.018).

P value – meaningful differences Image: Display transform I

Small differences can be statistically significant, but meaningless.

if your sample is too large

Large differences can be clinically meaningful, but statistically insignificant.

if your sample is too small

Correlation

- test assumptions
- interpretation (r, P)
- extrapolation
- no evidence for causality

Correlation – test assumptions

- both variables are numeric,
- at least one variable is normally distributed,
- sample is large (N>35),
- there is evidence for linear correlation

 (as observed from a scatterplot, or by plotting residuals)

Dawson B, Trapp RG. Basic and Clinical Biostatistics. 4th Ed. New York: Lange Medical Books/McGraw-Hill; 2004.

Correlation – test assumptions

Conditions for calculating correlation

Question: Is it correct to calculate the Pearson's correlation coefficient for the degree of burns on the body and the duration of hospitalization expressed by the number of days?

test assumptions are not met!

- degree of burns is an ordinal variable (grade 1-4)
- Spearman's correlation should be employed

Martina Udovicic, et al. What we need to know when calculating the coefficient of correlation. Biochemia Medica 2007;17(1):10-15.

Correlation – interpretation

Question: In a study of correlation between the mood and the amount of liquid consumed by daily drinking, the correlation r = 0.12; P = 0.003 was obtained. Is it correct to conclude that there is a significant correlation between the mood and the amount of the consumed liquid?

- No, there is no correlation!
 - though statistically significant, r is too small
 - r² coefficient of determination
 - 0.12 x 0.12 = 0.0144 (only 1.4 % data correlate)

Martina Udovicic, et al. What we need to know when calculating the coefficient of correlation. Biochemia Medica 2007:17(1):10-15.

Correlation – causality

Question: r = 0.78 and P = 0.002 were determined in a study of correlation between blood alcohol level and traffic accidents. Are we allowed to conclude that alcohol consumption is the cause of traffic accidents, i.e. that the observed traffic accidents are the consequence of alcohol consumption?

 No, correlation does not prove causality! (only prospective well designed trial may prove causality)

Martina Udovicic, et al. What we need to know when calculating the coefficient of correlation. Biochemia Medica 2007;17(1):10-15.

The multiple testing problem occurs when:

- testing for group equivalence in baseline characteristics,
- performing multiple pair-wise comparisons,
 testing multiple endpoints,
- performing secondary/subgroup analyses,
- performing interim analyses of accumulating data (one endpoint at several time points),
- comparing groups at multiple time points.

Tom Lang. Twenty Statistical Errors Even YOU Can Find in Biomedical Research Articles. CMJ. 2004;45(4):361-370

- apply correction for multiple testing
- declare your study as exploratory

Ethical Guidelines for Statistical Practice

- " The use of statistics in medical diagnoses and biomedical research may affect whether individuals live or die, whether their health is protected or jeopardized, and whether medical science advances or gets sidetracked...
- Because society depends on sound statistical practice, all practitioners of statistics, whatever their training and occupation, have social obligations to perform their work in a professional, competent, and ethical manner."
- Strasak AM. Statistical errors in medical research a review of common pitfalls. Swiss Med Wkly 2007;137:44-49

